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Abstract We consider the media-access control problem for
nodes with heavy traffic in single-destination wireless net-
works. We assume that each source transmits in each time
slot according to a transmission probability, which is a con-
tinuous value between 0 and 1. Our goal is to determine
the values of the transmission probabilities so that the net-
work throughput is maximized. In this paper, we show that
the maximum throughput is achieved only if these values
are either 0 or 1. We obtain closed-form results for optimal
throughput for networks that operate under a homogenous
situation in which the expected value of the received power at
the destination is the same for each source. We then extend
our studies to more general networks, which rely on exhaus-
tive search for the optimal set of transmissions. The search
has exponential complexity and is feasible only for networks
with small or moderate sizes. Thus, we also develop heuristic
algorithms, which have polynomial-time complexity and are
suitable for large and general networks.

1 Introduction

We study the media-access control (MAC) problem for one
of the most basic forms of wireless networking: a network
with K sources and a single destination. An example net-
work is shown in Fig. 1. Such a single-destination may be
part of a much larger multiple-source multiple-destination
network (e.g., a cellular network or a sensor network). The
network operates in a complex environment that includes
receiver noise, other-user interference, and channel fading.
Assume that the receiver has multi-packet reception (MPR)
capability, i.e., one or more packets may be decoded suc-
cessfully if the signal-to-interference-plus-noise ratio (SINR)
exceeds a specified threshold [3, 4].

We focus on the MAC problem for the uplink channel
(i.e., the channel from the sources to the destination), and
we are interested in how each of the K sources transmits
in each time slot. Here, we study a model that is different
from existing models such as random access (e.g., Aloha),
CSMA/CD, CSMA/CA (e.g., 802.11) and CDMA [2, 6, 7,
8]. In particular, our model assumes that source i transmits
in each time slot according to a transmission probability pi,
which is a continuous value between 0 and 1. Our goal is
to determine the vector (p1, p2, . . . , pK) so that the network
throughput is maximized.

In this paper, we show that the maximum throughput is
achieved only if the transmission probabilities are either 0
or 1. This result, which holds for any form of fading and
receiver noise, implies that the search space for the optimal
probabilities is reduced from an infinite and continuous space
to a finite set of points. Thus, our problem is equivalent
to that of determining a subset of transmission nodes that
maximizes the throughput.

We obtain the closed-form optimal solution for networks
that operate under a homogenous situation in which the ex-
pected value of the received power at the destination is the
same for each source. This case may arise when the sources
are located at the same distance from the destination, or al-
ternatively when power control is used. We then extend our
studies to more general networks, which rely on exhaustive
search for the optimal set of transmission nodes. The search
has exponential complexity and is feasible only for networks
with small or moderate sizes. Thus, we also develop heuristic
algorithms, which have polynomial-time complexity and are
suitable for large and general networks. Additionally, our
numerical results show that these heuristics perform almost
identically to the optimal solutions obtained by expensive
exhaustive search.
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Fig. 1 A network with K sources (Si) and a single destination (D):
Source Si transmits with probability pi in a time slot.

2 Network Model and Assumptions

We consider a stationary wireless network that has K
sources, denoted by S1, S2, . . . , SK , that transmit their traf-
fic to a common destination, denoted by D. An example
network with K = 6 sources is shown in Fig. 1. We assume
the following:
• The nodes, whose locations are known and fixed, are

equipped with omnidirectional antennas.
• The destination can successfully receive more than one

transmission at a time, i.e., it has MPR capability.
• Each source can communicate directly with the destina-

tion. Routing is not considered in this paper.
• The traffic is heavy in the sense that each source always

has traffic to transmit, i.e., its transmission queue is never
empty.

• Time is divided into slots. The traffic is expressed in
terms of fixed-size packets such that it takes one time
slot to transmit one packet.

• Our primary performance measure is sum throughput,
which is the average number of packets that are success-
fully received by the destination per time slot. We do not
address issues such as time delays and stability analysis
in this paper.

• Source Si transmits with probability pi in each time
slot, 0 ≤ pi ≤ 1. Our goal is to determine the vector
(p1, p2, . . . , pK) that maximizes the throughput.
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We assume that a packet is successfully received, even in
the presence of interference and noise, as long as its SINR
exceeds a given threshold [3, 4]. More precisely, suppose that
we are given a set H of sources that transmit in the same
time slot, and S ∈ H. Let Prx(S,D) be the signal power
received by node D for node S, and let SINR(S,D) be the
SINR at D for the transmission from S, i.e.,

SINR(S,D) =
Prx(S,D)

Pnoise(D) +
∑

U∈H\{S}

Prx(U,D)

where Pnoise(D) denotes the receiver noise power at D. We
assume that a packet transmitted by S is successfully re-
ceived by D if

SINR(S,D) > β (1)

where β ≥ 0 is a threshold at D, which is determined by
application requirements and the properties of the network.
When β < 1 (e.g., in spread-spectrum networks), it is pos-
sible for two or more transmissions to satisfy (1) simultane-
ously.

The wireless channel is affected by fading, as described
below. Let Ptx(S) be the transmit power at node S, and
r(S,D) be the distance between nodes S and D. When node
S transmits, the power received by node D is modeled by

Prx(S,D) = A(S,D)g(S,D)

where A(S,D) is a random variable that incorporates the
channel fading. We refer to g(S,D) as the “received power
factor,” which depends on r(S,D) and Ptx(S). For far-field
communication (i.e., when r(S,D)� 1), we have

g(S,D) = Ptx(S)r(S,D)−a (2)

where a is the path-loss exponent whose typical values are
between 2 and 4. A simple approximate model for both near-
field (i.e., when r(S,D) < 1) and far-field communication is

g(S,D) = Ptx(S)[r(S,D) + 1]−a (3)

where the expression r(S,D) + 1 is used to ensure that
g(S,D) ≤ Ptx(S). Under Rayleigh fading, A(S,D) is ex-
ponentially distributed [9, p. 36].

Our goal is to study methods for accomplishing the com-
munication between the sources and the destination, and to
evaluate the resulting performance. Existing methods such
as TDMA, 802.11, and Aloha do not allow simultaneous
transmissions, i.e., there is exactly one transmission and no
other-user interference in each time slot. In this paper we
consider MPR approaches, as described in the following sec-
tions, under which more than one transmission is allowed in
a time slot.

3 Throughput Evaluation

Recall that source Si transmits with probability pi in each
time slot, 0 ≤ pi ≤ 1. Our goal is to determine the vec-
tor (p1, p2, . . . , pK) that maximizes the network throughput,
which is the average number of packets that are successfully
received by the destination per time slot. The throughput

is computed as follows. To simplify the notation, we define
qi = 1− pi.

Let H be a set of sources, and let CH(Si, D) be the prob-
ability that a packet from source Si is successfully received
by destination D in a time slot, given that all the sources in
H simultaneously transmit in the slot.

First, consider the simplest case of K = 2 sources. The
throughput is T (p1, p2) = T1+T2, where Ti is the throughput
contributed by Si, i = 1, 2. The term T1 is the sum of 2
components: The 1st component is the probability that a
packet from source S1 is successfully received by destination
D in a time slot, given that both S1 and S2 transmit in the
time slot (which occurs with probability p1p2). Thus, the 1st
component is C{S1,S2}(S1, D)p1p2. The 2nd component is
the probability that a packet from S1 is successfully received
by D in a time slot, given that only S1 transmits in the
time slot (which occurs with probability p1q2). Thus, the
2nd component is C{S1}(S1, D)p1q1. We then have T1 =
C{S1,S2}(S1, D)p1p2 +C{S1}(S1, D)p1q2. Similarly, it can be
shown that T2 = C{S1,S2}(S2, D)p1p2+C{S2}(S2, D)q1p2. To
summarize, the throughput for the case of K = 2 is

T (p1, p2) = C{S1,S2}(S1, D)p1p2 + C{S1}(S1, D)p1q2

+ C{S1,S2}(S2, D)p1p2 + C{S2}(S2, D)q1p2
(4)

It can be verified that the right hand side of (4) equals
E(L) = Pr{L = 1} + 2 Pr{L = 2}, where L ∈ {0, 1, 2} is
the random variable representing the number of successful
transmissions in a time slot. Thus, the throughput T (p1, p2)
computed in (4) is indeed the average number of successful
transmissions in a time slot.

For the case of K = 3 sources, it can be shown that the
throughput is given by

T (p1, p2, p3) =

C{S1}(S1, D)p1q2q3 + C{S2}(S2, D)q1p2q3 + C{S3}(S3, D)q1q2p3

+ C{S1,S2}(S1, D)p1p2q3 + C{S1,S2}(S2, D)p1p2q3

+ C{S1,S3}(S1, D)p1q2p3 + C{S1,S3}(S3, D)p1q2p3

+ C{S2,S3}(S2, D)q1p2p3 + C{S2,S3}(S3, D)q1p2p3

+ C{S1,S2,S3}(S1, D)p1p2p3 + C{S1,S2,S3}(S2, D)p1p2p3

+ C{S1,S2,S3}(S3, D)p1p2p3

For the general case of K sources, it can be shown that
the throughput is given by

T (p1, p2, . . . , pK) =
∑
H 6=∅

∏
Si∈H

pi
∏
Sj 6∈H

(1− pj)
∑
S∈H

CH(S,D)

(5)
with the convention

∏
Sj∈∅(1− pj) = 1.

Direct computation of the throughput T (p1, p2, . . . , pK)
as given in (5) requires the summation of terms whose num-
ber increases rapidly as K increases. As seen above, the
number of terms grows from 4 for K = 2 to 12 for K = 3. It
can be shown in general that the number of terms is K2K−1.
In the following, we show that at the point of maximized
throughput, pi must be 0 or 1 for all i, i.e., the computation
of throughput can then be greatly simplified.
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4 Reduced Search Space for Optimal Solution

The following theorem is general, because it holds for ar-
bitrary values of CH(Si, D) used in the evaluation of the
throughput T (p1, p2, . . . , pK) as given in (5), i.e., the theo-
rem does not depend on the form of receiver noise, power
attenuation, and fading.

Theorem 1 Assume that each source Si transmits with
probability pi in a time slot, 0 ≤ pi ≤ 1. The throughput
T (p1, p2, . . . , pK) is then maximized for some binary vector
(p1, p2, . . . , pK), i.e., pi must be 0 or 1, for all i. Thus, the
optimal solution is confined to a finite set of 2K elements.

Proof Consider an arbitrary source Si, which trans-
mits with probability pi in a time slot, 0 ≤ pi ≤ 1.
For each (K − 1)-tuple (p1, p2, . . . , pi−1, pi+1, . . . , pK), let
us study the dependence of the throughput Ti(pi) =
T (p1, p2, . . . , pi−1, pi, pi+1, . . . , pK) on pi. First, note that
Ti(pi) is a weighted sum of terms, each of which con-
tains either pi or (1 − pi). Thus, for each (K − 1)-tuple
(p1, p2, . . . , pi−1, pi+1, . . . , pK), Ti(pi) varies according to a
straight line.

Because 0 ≤ pi ≤ 1, we see that this straight line starts
at pi = 0 and ends at pi = 1. Note that the slope of this
straight line depends on the values of pj and CH(Sk, D) for
all j 6= i and all sources Sk. Because Ti(pi) varies according
to a straight line, its maximum must occur at one of its
endpoints, i.e., Ti(pi) ≤ max{Ti(0), Ti(1)}. Thus, we have

T (p1, p2, . . . , pi−1, pi, pi+1, . . . , pK)

≤ max{T (p1, p2, . . . , pi−1, 0, pi+1, . . . , pK),

T (p1, p2, . . . , pi−1, 1, pi+1, . . . , pK)}
(6)

Reasoning as above, the terms on the RHS of (6) can be
further expanded as
T (p1, p2, . . . , pi−1, 0, pi+1, . . . , pK)

≤ max{T (p1, p2, . . . , 0, 0, pi+1, . . . , pK),

T (p1, p2, . . . , 1, 0, pi+1, . . . , pK)}
(7)

and
T (p1, p2, . . . , pi−1, 1, pi+1, . . . , pK)

≤ max{T (p1, p2, . . . , 0, 1, pi+1, . . . , pK),

T (p1, p2, . . . , 1, 1, pi+1, . . . , pK)}
(8)

From (6), (7), and (8), we then have

T (p1, p2, . . . , pi−1, pi, pi+1, . . . , pK)

≤ max{T (p1, p2, . . . , 0, 0, pi+1, . . . , pK),

T (p1, p2, . . . , 1, 0, pi+1, . . . , pK),

T (p1, p2, . . . , 0, 1, pi+1, . . . , pK),

T (p1, p2, . . . , 1, 1, pi+1, . . . , pK)}

(9)

By expanding the terms on the RHS of (9) repeatedly, it
can be shown that

T (p1, p2, . . . , pK) ≤ max{T (0, 0, . . . , 0), . . . , T (1, 1, . . . , 1)}

i.e., T (p1, p2, . . . , pK) is maximized at one of the binary vec-
tors (0, 0, . . . , 0), . . . , (1, 1, . . . , 1).

For the case of K = 2, the proof is especially simple,
because by applying (8) repeatedly, we have

T (p1, p2) ≤ max{T (0, p2), T (1, p2)}
≤ max{max{T (0, 0), T (0, 1)},max{T (1, 0), T (1, 1)}}
= max{T (0, 0), T (0, 1), T (1, 0), T (1, 1)} tu

Note that pi = 0 means source Si never transmits, and
pi = 1 means source Si always transmits. Theorem 1 states
that, when the throughput is maximized, pi must be either 0
or 1 for all sources Si, i.e., only a subset of sources are allowed
to transmit and all others are blocked from transmissions.
Thus, the maximized throughput can be simplified to

T =
∑
S∈H

CH(S,D) (10)

where H is a set of sources that transmit in the time slot
(i.e., their transmission probabilities are 1). As seen later,
Theorem 1 can be adapted to allow all the sources to transmit
in multiple time slots (see Remarks 1 and 2).

Theorem 1 is valid for any form of receiver noise and chan-
nel fading. For the rest of this paper, we focus on the case of
Rayleigh fading, for which the following result (whose proof
is given in [1, 5]) provides the exact formula for CH(S,D),
which depends on the receiver noise, channel fading, receiver
threshold, and other-user interference.

Theorem 2 Suppose that the fading between a transmitting
node S and a receiving node D is modeled as a Rayleigh
random variable YS with parameter v(S,D). For S 6= U ,
assume that YS and YU are independent. Given that all
the nodes in H simultaneously transmit in a time slot, the
probability that a packet from S is successfully received by
D is

CH(S,D) =

exp

(
− βPnoise(D)

v(S,D)g(S,D)

)
∏

U∈H\{S}

[
1 + β

v(U,D)g(U,D)

v(S,D)g(S,D)

]
where β and Pnoise(D) are the required SINR threshold and
the receiver noise power at D, respectively, and g(S,D) is
the received power factor defined in (2) and (3).

5 Networking in Homogenous Situation

We now assume that the network operates in a homoge-
nous situation, meaning that packets from all sources have
equal chance of being received successfully, i.e., CH(Si, D) =
CH(S1, D) for all subsets of sources H and all i. From (10),
the optimal throughput is simply T = |H|CH(S1, D) for
some subset of sources H.

For the case of Rayleigh fading, it is sufficient to assume
that v(Si, D)g(Si, D) = v(S1, D)g(S1, D) for all i, where
v(Si, D) is the Rayleigh fading parameter and g(S,D) is the
received power factor, as defined in (2) and (3), which de-
pends on the distance r(S,D) and the transmitted power
Ptx(S). This case may arise when all the sources transmit
with the same power and are located the same distance from
the destination (as shown in Fig. 2), or alternatively when
power control is used. Thus, the expected value of the re-
ceived power at the destination is the same for each source.

485



Theorem 3 Assume that v(Si, D)g(Si, D) = v(S1, D)g(S1, D)
for 1 ≤ i ≤ K, and also assume that m sources simultane-
ously transmit in a time slot, 1 ≤ m ≤ K. The throughput
is then given by

T = m

exp

(
− βPnoise

v(S1, D)g(S1, D)

)
(1 + β)m−1

which is maximized when

m =


1 if β ≥ 1⌊ 1

ln(1 + β)
+ 0.5

⌋
if e1/K − 1 < β < 1

K if 0 ≤ β ≤ e1/K − 1

Proof Let H be a set of sources that transmit in a time
slot, and let m = |H|. Theorem 2 implies that

CH(Si, D) = CH(S1, D) =
exp

(
− βPnoise

v(S1,D)g(S1,D)

)
(1 + β)m−1

The total throughput from the m transmissions is then

T (m) = m
exp

(
− βPnoise

v(S1,D)g(S1,D)

)
(1 + β)m−1

By considering m as a continuous variable, taking the
derivative of T (m), and then setting the results to zero, it
can be shown that m = 1/ ln(1 + β).

Note that m in our original problem is an integer between
1 and K. Thus, m = 1 if 1/ ln(1 + β) ≤ 1, and m = K if
1/ ln(1 + β) ≥ K. Further, m ≈ 1/ ln(1 + β) when 1 <
1/ ln(1 +β) < K. In this case, our numerical studies suggest
that m = b1/ ln(1 +β) + 0.5c. To summarize, the optimal m
is given by

m =

 1 if 1/ ln(1 + β) ≤ 1
b1/ ln(1 + β) + 0.5c if 1 < 1/ ln(1 + β) < K
K if 1/ ln(1 + β) ≥ K

which is equivalent to

m =


1 if β ≥ e− 1⌊ 1

ln(1 + β)
+ 0.5

⌋
if e1/K − 1 < β < e− 1

K if 0 ≤ β ≤ e1/K − 1

Now assume that β ≥ 1. It can be shown by induction
that m ≤ 2m−1 for m ≥ 1. Using this inequality, we then
have

T (1) = exp

(
− βPnoise

v(S1, D)g(S1, D)

)

≥ m
exp

(
− βPnoise

v(S1,D)g(S1,D)

)
2m−1

≥ m
exp

(
− βPnoise

v(S1,D)g(S1,D)

)
(1 + β)m−1

= T (m)

i.e., the optimum is m = 1 for β ≥ 1. tu

Remark 1
(1) Theorem 3 implies that the optimal number of transmis-
sions, m, is independent of Pnoise for all β ≥ 0. Further, for
β ≥ 1, the optimum is m = 1, independent of the network
size K.
(2) Let us compare the throughput performance of our
method with the well-known slotted Aloha for the case
of Pnoise = 0. The throughput of the slotted Aloha is
TAloha = 1/e = 0.368 for sufficiently large K [7]. Theorem 3
implies that the throughput T of our method is between 1
and K. Note that TAloha is independent of β, while T is
highly dependent on β. Further, the slotted Aloha is dis-
tributed, while our method is centralized.
(3) Theorem 3 specifies the optimal number of sources, m,
that transmit in each time slot. For the case of m < K,
we can use a round-robin scheme to allow all the sources to
transmit in multiple time slots (i.e., a method for fairness).
For example, suppose that the total number of sources is
K = 5, and the optimal number of sources that transmit in
each time slot is m = 3. All the sources can transmit in mul-
tiple time slots as follows: S1, S2, S3 (in slot 1), S4, S5, S1 (in
slot 2), S2, S3, S4 (in slot 3), S5, S1, S2 (in slot 4), S3, S4, S5

(in slot 5), etc. tu

DSi

Fig. 2 The sources lie on a circle centered at the destination.

6 Networking in Non-homogenous Situation

We now assume that the network operates in a non-
homogenous situation, meaning that packets from the
sources may have unequal chance of being received success-
fully, i.e., CH(Si, D) 6= CH(S1, D) for some set of sources H
and some i. As seen in Section 4, Theorem 1 implies that,
given a general wireless network of K sources and a destina-
tion, our problem reduces to finding the optimal subset H∗

of sources that, when they transmit simultaneously in a time
slot, maximizes the network throughput

T =
∑
S∈H∗

CH∗(S,D)

For a given set of K sources, there are 2K − 1 non-empty
subsets of sources. By comparing the throughput values
among these 2K−1 subsets, the optimal subset H∗ of sources
can be found. Thus, exhaustive search has O(2K) complex-
ity.

In the following, we present 2 heuristic algorithms of
greatly reduced complexity. Our numerical evaluation for nu-
merous network instances of small and moderate size shows
that they produce optimal or nearly optimal solutions. In
both of these algorithms, candidate transmission sets are
produced by choosing an initial transmitting node, and then
adding additional nodes into the time slot until the resulting
throughput does not increase further. The best such trans-
mission set is the one that results in the largest value of
throughput. The algorithms for constructing the candidate
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transmission sets differ in terms of the order according to
which the sources are added into the time slot.

Algorithm 1: Systematic Node Selection
• Label the K sources according to decreasing values of

their throughput (under the assumption that each node
transmits alone in a time slot), i.e., S1 has the highest
throughput and SK the lowest. This can be done via
sorting, which has O(K logK) complexity.

• For each i, 1 ≤ i ≤ K, form the following candidate
transmission set of consecutive sources

Ai = {Si, Si+1, . . . , Si+ni−1, Si+ni
}

where i+ni ≤ K. Note that there are no gaps in Ai, i.e.,
|Ai| = ni + 1. The sources Si, Si+1, . . . , Si+ni

are added
one by one into the time slot, where Si+ni

is the last
source beyond which the throughput does not increase
further. Let T (Ai) be the throughput obtained when the
sources in Ai transmit in the time slot.

• Finally, we choose the transmission set A∗ that yields
the maximum throughput, i.e., the chosen A∗ satisfies
T (A∗) = max{T (Ai), 1 ≤ i ≤ K}. It can be shown that
the overall complexity of Algorithm 1 is O(K2).

Note that the candidate transmission sets for Algorithm 1
contain no gaps, when the sources are ordered from highest
expected received power to lowest. Restricting the class of
policies that must be examined in this manner reduces the
complexity of the algorithm.

Algorithm 2: Greedy Node Selection
As with Algorithm 1, K candidate transmission sets are

constructed, each using one of the K sources as a starting
point. Each additional source is chosen with the greedy ob-
jective of maximizing the throughput in the slot. Unlike
Algorithm 1, the numbering of the sources in this algorithm
is arbitrary, i.e., unrelated to their throughput in isolation.
The basic idea is, at each step, to add the source that yields
the maximum throughput into the time slot. More specifi-
cally,
• For each i, 1 ≤ i ≤ K, perform the following procedure:
− Step 1: Add source Si as the initial source into the

time slot.
− Step k: Add into the slot the source that yields the

maximum throughput computed up to this step.
− The algorithm stops when the throughput does not

increase further.
• Repeat the above procedure with Si as initial source,

for each i, 1 ≤ i ≤ K. Let T (Si) be the resulting
throughput obtained when Si is the initial source. We
then choose the initial source that yields the maximum
throughput, i.e., the chosen initial source Si∗ satisfies
T (Si∗) = max{T (Si), 1 ≤ i ≤ K}. It can be shown that
the overall complexity of Algorithm 2 is O(K3).

We now compare the throughput performance for OPT
(i.e., exhaustive search), Algorithm 1, and Algorithm 2. We
assume the following:

• The path-loss exponent is a = 3.

• The wireless channel is affected by Rayleigh fading with
Rayleigh parameter v(S,D) = 1.

• The received power factor g(S,D) is given by (3).

• The transmit power is Ptx(S) = 1 for all source nodes S.
The receiver noise power at destination D is Pnoise(D) =
10−4.

We now study a stationary wireless network as shown
in Fig. 3, which has a destination D and K sources (Si).
Assume that the sources are located randomly in the circle
centered at (0, 0) and of radius r = 5. The destination is
located at (xD, 0). In the following, we show the through-
put T versus the SINR threshold β for various network sizes
and topology configurations. The throughput values are av-
eraged over 100 random network instances. Smaller values
of β result in higher throughput T , as expected.

Consider a small network with K = 10 sources. First, let
xD = 0, i.e., the destination is located at the center of the
circular region in which the sources are distributed. The per-
formance results are shown in Fig. 4, which shows that our 2
heuristic algorithms (which have polynomial-time complex-
ity) perform almost identically to OPT (which is an expen-
sive exhautsive search). In fact, our numerical results show
that Algorithm 1 performs identically to OPT, and Algo-
rithm 2 also performs identically to OPT with the exception
of a few network instances.

Next, let xD = 10, i.e., the destination is outside the circle
of radius r = 5. As shown in Fig. 5, the throughput results
are lower than those for the case of xD = 0. This is because
the distances between the sources and the destination are
larger (while the receiver noise power at destination D still
maintains at Pnoise(D) = 10−4), which imply that the SINR
at the destination is now reduced. Again, our 2 heuristic
algorithms perform almost identically to OPT. Similar ob-
servations (which are not shown here) also hold for networks
of moderate size (e.g., K = 20 and K = 30).

We now consider a network with K = 100 nodes. It
is not feasible to apply OPT, which has high computational
complexity, to the network with this large size. The through-
put results are shown in Fig. 6 (for xD = 0) and Fig. 7 (for
xD = 10) for our polynomial-time Algorithms 1 and 2. The 2
algorithms perform almost identically, with the exception of
a few network instances where Algorithm 1 slightly outper-
forms Algorithm 2.

Dr

.

(xD, 0 )
(0, 0)

Si

Fig. 3 A wireless network with K sources (Si) and
a destination (D).
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Fig. 4 Throughput (T ) vs SINR threshold (β)
for K = 10 and xD = 0.
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Fig. 5 Throughput (T ) vs SINR threshold (β)
for K = 10 and xD = 10.
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Fig. 6 Throughput (T ) vs SINR threshold (β)
for K = 100 and xD = 0.
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Fig. 7 Throughput (T ) vs SINR threshold (β)
for K = 100 and xD = 10.

Remark 2 One of the algorithms (OPT, Algorithm 1, or
Algorithm 2) in this section can be used to find a subset H
of sources that transmit in a single time slot. For the case
of |H| < K, we can use the algorithm repeatedly (with a
modified set of available sources) to allow all the sources to

transmit in multiple time slots. For example, suppose that
the total number of sources is K = 6, and suppose that the
subset of sources that transmit in each time slot is found
to be H = {S2, S5}. We can then transmit S2 and S5 in
time slot 1. We apply the same algorithm to the reduced
source set {S1, S3, S4, S6} to find the next subset of sources
for transmission in time slot 2, etc. In this way, as a method
for fairness, all the sources can transmit in multiple time
slots. tu

7 Summary

For the MAC problem considered in this paper, throughput
in a single slot is maximized by the choice of an appropriate
transmission set, rather than via a randomized approach in
which the sources transmit with some probability. This re-
duces the optimization problem from a continuous one to a
finite one. As shown in our studies, the proposed heuristic
algorithms for finding the transmission sets not only have low
complexity, but also perform almost identically to the opti-
mal sets obtained by expensive exhaustive search. Further,
our transmission method for a single time slot (for provid-
ing transmission opportunities to a subset of sources) can be
extended to multiple time slots (for providing transmission
opportunities to all sources, i.e., a method for fairness).
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